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Abstract

To address the effects of curvature, initial conditions and disturbances, a numerical study is made on the fully-developed bifurcation
structure and stability of the forced convection in curved microchannels of square cross-section and curvature ratio 5 � 10�6. No matter
how small it is, the channel curvature always generates the secondary flow in the channel cross-plane which increases the mean friction
factor moderately and the Nusselt number significantly. Unknown initial conditions of convection lead to the co-existence of multiple
steady fully-developed flows of various structures. Ten solution branches (either symmetric or asymmetric) are found with eight symme-
try-breaking bifurcation points and thirty-one limit points. Thus a rich solution structure exists with the co-existence of various flow
states over certain ranges of governing parameters. Dynamic responses of the multiple steady flows to finite random disturbances are
examined by the direct transient computation. It is found that possible physically realizable fully-developed flows under the effect of
unknown disturbances evolve, as the Dean number increases, from a stable steady 2-cell state at lower Dean number to a temporal peri-
odic oscillation, another stable steady 2-cell state, a temporal intermittent oscillation, and a chaotic temporal oscillation. There exist no
stable steady fully-developed flows in some ranges of governing parameters. Both the mean friction factor and the mean Nusselt number
are also obtained and analyzed with their correlating relations listed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow in curved microchannels finds its applications in
various microfludics devices for changing flow direction,
enhancing mixing/separation/reaction, increasing channel
length within a compact area and avoiding corners [1,2].
Previous studies focused mainly on the curvature-induced
dispersion and the dispersion-reduction schemes [3,4].
Studies of detailed flow characteristics in curved micro-
channels are very limited in this relatively new and exciting
field. Ref. [5] appears the only reported experimental study
of friction factor of water flows in curved mini-channels of
depth 0.1 mm, width varying from 0.5 to 1 mm and curva-
ture radius from 33 to 53 mm.
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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As a limiting case of flow in curved microchannels, flow
in straight microchannels has emerged as an important area
of research during the last decade. Critical state-of-the-art
reviews of literature are available, for example, in [6–8].
Previous investigations focused primarily on single-phase
flow and heat transfer in trapezoidal, circular, rectangular,
and parallel plate microchannels [7]. The research focus has
been mainly on the applicability of classical continuum
model [6], the friction factor and the heat transfer coeffi-
cient [7,8]. Here we refer the classical continuum model
as the continuum model from conservations of mass,
momentum and energy, linear constitutive relations of
stress-strain and heat flux-temperature gradient, no-slip
and no-temperature-jump boundary conditions [6].

The classical continuum model works under two condi-
tions: the fluid is a continuum, and the flow is not too far
from thermodynamic equilibrium [6]. For gases, the Knud-
sen number Kn, defined as the ratio of the mean free path
to the characteristic length of the flow, determines the
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degree of rarefaction and the applicability of classical con-
tinuum model. The classical continuum model leads to
fairly accurate predictions for Kn < 0.001. Slip and jump
effects must be taken into account for 0.001 6 Kn < 0.1.
For 0.1 6 Kn < 10, the classical continuum model breaks
down and alternative continuum models are needed. For
Kn P 10, the flow must be modeled as the free-molecule
flow.

The density of liquids is about 1000 times the density of
gases. The spacing between molecules in liquids is approx-
imately ten times less than the spacing in gases [8]. Liquid
molecules do not have a mean free path. The lattice spacing
may, however, be used as a similar measure [8]. For water,
the lattice spacing is 0.3 nm. In a 1-lm gap and a 50-lm-
diameter channel, the equivalent Knudsen numbers are
3 � 10�4 and 6 � 10�6, respectively, well within the range
of obeying continuum flow [8]. The effects of slip and tem-
perature jump boundary conditions will not occur either
unless the channels are smaller than approximately 3 nm
[8]. Thus, liquid flow and heat transfer in microchannels
of hydraulic diameters ranging from 1 lm to 1 mm should
be described adequately by the classical continuum model
[8].

Large differences exist in the reported friction factors
(0.5 6 f/fmac 6 5) and heat transfer coefficients (0.21 6
Nu/Numac 6 16) for single-phase flow through channels of
hydraulic diameters ranging from 0.96 to 2.6 mm [7]. Here
f and Nu are the friction factor and the Nusselt number,
respectively. Subscript mac stands for macroscale predic-
tions. Refs. [9–11] are examples of the works reporting
the friction factor lower than macroscale predictions, fol-
lowing predictions, and higher than predictions respec-
tively. Refs. [9,12,13] reported, on the other hand, the
Nusselt number lower than macroscale predictions, follow-
ing predictions, and higher than predictions respectively.
There also exists a large discrepancy in the reported critical
Reynolds number Rec for transition from laminar to turbu-
lent flow in microchannels [7,8]. While Rec is found to be
very close to that in the macrochannels in some studies
[8], a much lower Rec is reported in [11] and the other
works. Furthermore, experiments in [14] show no transi-
tion for Reynolds numbers up to 10 000.

Suggested reasons for the derivations of liquid flow and
heat transfer characteristics in straight microchannels from
those of macrochannels are surface roughness effects,
entrance and three-dimensional transport effects, electric
double-layer (EDL) effects, channel curvature, effects of
initial conditions and disturbances [7,8]. As generally
accepted [7,8], however, no conclusive explanation is avail-
able at present for these phenomena. The quantification of
each of these effects is not available in the literature either.

The very large differences in the reported f/fmac,
Nu/Numac and Rec might be an indication of the co-exis-
tence of multiple flow and heat transfer states, a signature
of effects of unknown initial conditions and disturbances
and a common phenomenon of nonlinear dynamic sys-
tems. While the study of multiplicity and stability is crucial
for understanding of flow and heat transfer in microchan-
nels in general, for quantification of the effects of initial
conditions and disturbances and reconciliation of the
inconsistencies in the reported f/fmac, Nu/Numac and Rec

in particular, there appears no such study available in this
relatively new and exciting field.

In an attempt to examine the effects of channel curva-
ture, initial conditions and disturbances, the present contri-
bution addresses the fully-developed, two-dimensional
bifurcation structure and stability of the forced convection
in a square microchannel with a very slight curvature. The
flow geometry is illustrated in Fig. 1 with (R,Z,/) as the
radial (normal), spanwise and streamwise directions,
respectively. A viscous fluid is driven by a streamwise pres-
sure gradient to flow through a square microchannel with a
very slight streamwise curvature and a uniform wall heat
flux. All microchannels used in the experiments are not per-
fectly straight so that a numerical simulation of flows in
slightly curved microchannels is more relevant and desir-
able. A perfectly straight microchannel can also be
reviewed as a special case of curved microchannels when
r = 0. Here r is the curvature ratio defined by a/Rc, the
ratio of channel width a over the radius of curvature Rc

(Fig. 1). As the mixed convection in straight channels
and the forced convection in curved channels have similar
flow bifurcation and stability features [15], the results in
this paper can also shed the light on the multiplicity and
stability of mixed convection in straight microchannels.

As the first part of the work, we use the classical contin-
uum model, good for liquid flows and gas flows with
Kn < 0.001, to model the flow and heat transfer in micro-
channels and focus on the effects of initial conditions and
disturbances without considering the effects of EDL and
surface roughness. The governing differential equations in
primitive variables are solved for detailed bifurcation struc-
ture by a finite-volume/Euler–Newton continuation
method with the help of the bifurcation test function, the
branch switching technique and the parameterization of
arc-length or local variable [16,17]. Transient calculation
is made to examine in detail the response of every solution
family to finite random disturbances. The Hopf bifurcation
can also be detected by the transient computation. The
work differs from the previous studies of macroscale curved
channel flows mainly on the extension to the forced convec-
tion in very slightly curved channels and the examination
of the effects of initial conditions and disturbances on the
forced convection in microchannels. The readers are refer-
eed to [18] for available bifurcation structure and stability
of macroscale curved channel flows in the literature.

2. Governing equations

Consider a hydrodynamically and thermally fully devel-
oped laminar flow of viscous fluid in a slightly curved
square microchannel under the thermal boundary condi-
tions of uniform wall heat flux and peripherally uniform
wall temperature at any streamwise position (Fig. 1). The



R

ZRc

a

a

o

φ

o'

Fig. 1. Physical problem and coordinate system.
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geometry is toroidal and hence the finite pitch effect is not
considered. Properties of the fluid, density in particular, are
taken to be constant. Therefore, a gravity potential can be
introduced for the purely hydrostatic effect of gravity [15].

Consider a toroidal coordinate system (R,Z,/) as
shown in Fig. 1. Let U, V and W be velocity components
in directions of R, Z, and / respectively, t the time, and
T, Tw the temperatures of the fluid and the wall. Continu-
ity, Navier–Stokes and energy equations governing the
fully developed laminar flow and heat transfer are given,
in terms of dimensionless variables, as [15,18]

Continuity equation

o

or
f½1þ rðr � 0:5Þ�ug þ o

oz
f½1þ rðr � 0:5Þ�vg ¼ 0: ð1Þ

Momentum equations

ou
os
þu

ou
or
þv

ou
oz
� 16w2Dk2

r½1þrðr�0:5Þ�

¼�op
or
þ o

2u
or2
þo

2u
oz2
þ r

1þrðr�0:5Þ
ou
or
� r2u

½1þrðr�0:5Þ�2

( )
; ð2Þ

ov
os
þu

ov
or
þ v

ov
oz
¼�op

oz
þ o

2v
or2
þo

2v
oz2
þ r

1þrðr�0:5Þ
ov
or

� �
; ð3Þ

ow
os
þu

ow
or
þv

ow
oz
þ ruw

1þrðr�0:5Þ

¼ 1

1þrðr�0:5Þþ
o

2w
or2
þo

2w
oz2
þ r

1þrðr�0:5Þ
ow
or
� r2w

½1þrðr�0:5Þ�2

( )
:

ð4Þ

Energy equation

oh
os
þ u

oh
or
þ v

oh
oz
� 4wDk

rPr½1þ rðr � 0:5Þ�

¼ 1

Pr
o

2h
or2
þ o

2h
oz2
þ r

1þ rðr � 0:5Þ
oh
or

� �
: ð5Þ

The dimensionless variables are defined as

r ¼ R
a
; z ¼ Z

a
; s ¼ t

m=a2
; u ¼ aU

m
; v ¼ aV

m
;

w ¼ W
W 1

; p ¼ P

qðm=aÞ2
; h ¼ T w � T

DT
;

where v and q are the kinematic viscosity and the density of
the fluid; a is the channel radial dimension; P is a pseudo-
pressure, a combination of fluid pressure and the gravity
potential; W1 and DT are the representative streamwise
velocity and temperature difference, respectively, which
are defined as

W 1 ¼
a2c1

l
; DT ¼ Prac2:
Here l is the viscosity of the fluid; Pr, the Prandtl number;
c1, the streamwise pressure gradient which is a positive
constant for hydrodynamically fully developed flow
(c1 ¼ � op0

Rco/
with Rc as the curvature radius) [15]; c2, the

streamwise temperature gradient which is a constant for
the thermally fully developed flow, but can be positive or
negative depending on the heating or cooling of the fluid

c2 ¼ oT
Rco/

� �
[15].

It is customary to use the mean streamwise velocity Wm

and the difference between the wall temperature and the
bulk mean temperature (Tw � Tb) for the non-dimensional-
ization of streamwise velocity and temperature, respec-
tively. However, the employment of these quantities
results unavoidably in the appearance of two unknown
dimensional parameters in the governing equations, which
comprise the unknowns Wm and Tb, respectively. Conse-
quently, the iterative procedure should be applied, assum-
ing some initial estimated values to them. It requires an
additional computation time. In order to avoid this addi-
tional increase in computation time, we follow [15] in using
W1 and DT as the representative streamwise velocity and
the representative temperature difference, respectively.
They involve the streamwise pressure gradient c1 and the
streamwise temperature gradient c2, which are usually
given as design parameters so that it does not induce the
difficulty in using computation results for design. The
velocity W1 is proportional to the pressure drop in the
streamwise direction. For the flow in a stationary straight
circular tube, the mean streamwise velocity Wm is related
to W1 as Wm = W1/8 [15]. The temperature difference DT
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is, on the other hand, proportional to the fluid temperature
difference between the inlet and outlet of the channel.

Three dimensionless parameters are defined as, with a as
the thermal diffusivity,

r ¼ a
Rc
; Pr ¼ m

a
; Dk ¼ raW 1

4m
:

The dimensionless groups adopted here are those in
[15,18]. The curvature ratio r is a geometry parameter, rep-
resenting the degree of curvature. The Prandtl number Pr,
a thermophysical property parameter, represents the ratio
of momentum diffusion rate to that of thermal diffusion.
Dk is a pseudo Dean number with W1 as the characteristic
velocity [15,18].

Boundary conditions (non-slip, impermeability and uni-
form peripheral temperature) may be written, in terms of
dimensionless variables, as

u ¼ v ¼ w ¼ h ¼ 0 at r ¼ 0; 1 for � 0:5 6 z 6 0:5; ð6Þ
u ¼ v ¼ w ¼ h ¼ 0 at z ¼ �0:5; 0:5 for 0 6 r 6 1: ð7Þ

Within the scope of the present study, the Eqs. (1)–(5)
under the boundary conditions (6), and (7) constitute the
mathematical model of the problem under consideration
in forms of primitive variables u, v, w, p and h. We use them
to examine the steady bifurcation structure by removing all
time-dependent terms. We also use them to study stability
properties of multiple solutions through a direct transient
computation examining dynamic responses of every steady
solution family to finite random disturbances.

After the velocity and temperature fields are obtained,
the computation of the local friction factor and Nusselt
number is of practical interest. Following the usual defini-
tions, the expression for the product of friction factor and
Reynolds number fRe and Nusselt number Nu can be writ-
ten based on the local streamwise velocity gradient and
temperature gradient at the wall as [15],

fRe ¼ 2

wm

ow
on

� �
wall; ð8Þ

Nu ¼ 1

hb

oh
on

� �
wall; ð9Þ

where wm and hb are the mean streamwise velocity and the
bulk mean temperature, respectively. The mean friction
factor and Nusselt number can be obtained by peripherally
averaging their local values.

3. Numerical algorithm

3.1. Bifurcation structure

For steady bifurcation structure, we remove the time-
dependent terms in Eqs. (2)–(5). The governing Eqs. (1)–
(5) are then discretized under the boundary conditions (6)
and (7) by the finite volume method which is an adaptation
of that in [15,18]. Main features of this method include a
staggered mesh system, a power-law formulation for the
combined effect of convection and diffusion terms, and cen-
tral difference scheme for source terms. After this discreti-
zation in the flow domain, we obtain a set of nonlinear
algebraic equations, the so-called discretization equations,
which approximate the governing differential Eqs. (1)–(5)
under the boundary conditions (6) and (7) and can be writ-
ten symbolically as

fðy; aÞ ¼ 0; ð10Þ
where a = [r,Pr,Dk] (the parameter vector), y is the depen-
dent variable vector of size N with N as the total number of
equations, and f is a vector-valued function of size N.

Among the three parameters, the curvature ratio r is a
more detailed measure of the effect of geometry and the
extent to which the centrifugal force varies on the cross sec-
tion. For a very slightly curved channel, we fix its value at
5 � 10�6. While the Prandtl number Pr affects the temper-
ature field, it has no effect on flows because the flow field is
decoupled with the temperature field for the forced convec-
tion. In the present work, we set the Pr at 7.0, a typical
value for water.

Eq. (10) has a solution y = 0 when Dk = 0. This is phys-
ically obvious and can be confirmed by a dimensional ver-
sion of (1)–(7). This point serves the starting point of our
continuation schemes in tracing solution branches as the
control parameter k varies. We use Dk, as the control
parameter, for the regular portion of solution branches, u
at r = 0.9 and z = 0.14 (Dk as one unknown variable) or
the arc-length s for turning limit points [16,17]. The u at
(0.9, 0.14) is selected as the control parameter k in turning
limit points because it varies significantly as Dk changes.
For the case of using s as the control parameter k in turning
limit points in the arc-length continuation, we need an
additional algebraic equation

XN
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oDk
os
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in addition to Eq. (10) which now takes the form of

fðyðsÞ; DkðsÞÞ ¼ 0: ð12Þ
Here, s = k(y,Dk)Tk2, s � s0 is the step size along the

branch and yj is a component of y. Eq. (11) is obtained
by differentiating the defining equation of s

XN

j¼1

½yjðsÞ � yjðs0Þ�2 þ ½DkðsÞ � Dkðs0Þ�2 ¼ ðs� s0Þ2

with respect to s.
Eq. (10) (or Eqs. (11) and (12)) is solved for the whole

branch solution by Euler–Newton method for all unknown
dependent variables simultaneously. Let y(ki) be the solu-
tion at k = ki which has been obtained, the Euler predictor
for y(ki + Dk) is, where Dk is the step size,

y0ðki þ DkÞ ¼ yðkiÞ þ
oy

ok

����
ki

Dk; ð13Þ
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where oy
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��
ki

is the solution of the system of linear algebraic
equations

JjyðkiÞ;ki

oy

ok

����
ki

¼ �of

ok

����
ki

: ð14Þ

Here J with J ij ¼ ofi
oyj

as components is the Jacobian matrix,
and is evaluated numerically by the forward difference [17].
Linear Eq. (14) is then solved by the SPARSPAK (the
Waterloo sparse matrix package), which is a collection of
FORTRAN subroutines for solving large sparse systems
of linear equations. The basic approach used in the SPAR-
SPAK is to compute a triangular factorization of the coef-
ficient matrix using Gaussian elimination without any row
interchanges [17].

Using y0(ki + Dk) from the Euler-predictor (Eq. (13)) as
the initial guess of y(ki + Dk), the damped Newton iteration
of Eq. (10) (or Eqs. (11) and (12)), in which the Jacobian
matrix J is updated once for every four iterations, leads to:

J½ykþ1ðki þ DkÞ � ykðki þ DkÞ�
¼ fk½ykðki þ DkÞ; ki þ Dk�; k ¼ 1; 2; . . . ; ð15Þ

where k denotes the kth iteration. Eq. (15) is solved for
yk+1(ki + Dk) by the SPARSPAK. The solution was as-
sumed to be convergent in a numerical sense if the Euclid-
ean norm of error in each of the primitive variables (i.e.,
velocity components, temperature and pressure) over all
grid points is less than 10�10 between successive iterations.

In order to detect bifurcation points, a test function sij,
defined by [16,17]

sij ¼ eT
i Jh ð16Þ

is evaluated at every continuation step after the Newton
iteration is convergent. Here, ei is a unit column vector
of size N and the column vector h of size N satisfies

Jijh ¼ ei; ð17Þ

where the matrix Jij is a reduced J by replacing its ith row
by a unit vector, i.e.,

Jij ¼ ½ðI� eie
T
i ÞJþ eie

T
j �: ð18Þ

Eq. (17) guarantees that h is a non-trivial solution and is
solved by the SPARSPAK. When the system is at the bifur-
cation point (i.e., singular J), sij vanishes. The values of i

and j can be any integer less than N. For our problem,
we take the grid indexes of point (0.9,0.14) as their values.
This choice works well as the flow at this point changes
sensitively with Dk.

Branch switching refers to the calculation of at least one
solution on the emanating branch arising at the bifurcation
point. This first solution could serve as the starting point
for a subsequent tracing of the entire branch. Note that
at least two solutions [y(k1),k1] and [y(k2),k2] with opposite
sign of the test function sij are available close to the bifur-
cation in practice. We use the branch switching technique
developed by Seydel [16] which approximates the difference
between the branches by
d0 maxf1; jykðk�Þjgh:
Here, d0 is an empirical variable. Seydel [16] found that
d0 = 0.02 is successful for a wide range of practical prob-
lems. For our problem, a value in the range 0.01–0.04
enables us to switch branches successfully. yk is the kth
component of y with the index k from 1 up to N. k* is either
k1 or k2. h is a column vector of size N defined and deter-
mined by Eq. (17) with Jij evaluated at k* and y(k*). Using

y0ðk�Þ ¼ yðk�Þ � d0 maxf1; jykðk�Þjgh ð19Þ
as the initial guess, the damped Newton iteration of Eq.
(10) (or Eqs. (11) and (12))

Jjykðk�Þ;k½ykþ1ðk�Þ � ykðk�Þ� ¼ fk½ykðk�Þ; k��;
k ¼ 1; 2; . . . ; ð20Þ

could lead to a first solution on the emanating branch.

3.2. Dynamic responses to finite random disturbances

For transient computation aiming for the response of
multiple steady solutions to the finite two-dimensional ran-
dom disturbances, we obtain the discretization equations
by integrating the governing equations with the time-
dependent terms over every control volume and over the
time period from s to s + Ds (the finite volume method).
The fully implicit method is used because of its superior
numerical stability. The system of discretization equations
is then solved by the Euler-Damped Newton method
described above by viewing time s as the continuation
parameter. The initial condition at s = 0, which also serves
the starting point of the continuation scheme, is formed by
the steady solution ys(Dk) plus a finite random disturbance.
Here, the subscript s denotes the steady solution. The ran-
dom disturbance is generated by d(k)v(k)ys(Dk). Here d is
the maximum percentage of disturbing value over the
steady value ys. The superscript k represents the ordinal
of the disturbance. v is a vector of size N whose compo-
nents take random values from �1 to 1 and are generated
by the computer. To examine dynamic responses of a
steady solution to different finite random disturbances,
we normally generate three sets of disturbances denoted
by k = 1, 2, and 3, with d = 5%, 10%, and 15% respectively.

3.3. Grid-dependence check

With the recognition that at a point in the parameter
space, several different solutions with quite different flow
structures can coexist, a uniform grid that is fine enough
to resolve all the different flow structures appears proper.
In the present computations, the grid dependence was
checked by three pairs of grid sizes uniformly distributed
in the flow domain. They are 50 � 50, 100 � 100 and
200 � 200. The pair of numbers (L � K) represents the
number of grid points used in r and z-directions, respec-
tively. The bifurcation diagrams obtained by using these
three grid sizes are shown in Fig. 2 with the u velocity
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component at (0.9, 0.14) as the state variable and De as the
parameter at r = 5 � 10�6 and Pr = 7.0. Here De is the
Dean number defined by De ¼ Re

ffiffiffi
r
p

(Re is the Reynolds
number). Fig. 2 shows that the bifurcation diagram has
no structural change for all three pairs of grid sizes. The
quantitative change is also very small for most of interested
region of De from 100 � 100 to 200 � 200. Table 1 lists
location variations of some limit and bifurcation points
in terms of their De values. The general trend of these
results as the grid size is decreased tends to indicate that
the solutions for the case of (100 � 100) grids are accurate
to within 1% tolerance. We also checked the detailed
variations of flow and temperature fields on various solu-
tion branches for different grid sizes, and found that
Table 1
Location variation of some limit and bifurcation points in terms of their De v

Points Grids De Points Grids

S1
1 50 � 50 127.42 S1

2 50 � 50
100 � 100 128.09 100 � 10
200 � 200 128.26 200 � 20

S2
1 50 � 50 110.80 S2

2 50 � 50
100 � 100 110.90 100 � 10
200 � 200 110.93 200 � 20

A1
1 50 � 50 126.28 S3

2 50 � 50
100 � 100 126.74 100 � 10
200 � 200 126.95 200 � 20

A2
1 50 � 50 / S4

2 50 � 50
100 � 100 209.80 100 � 10
200 � 200 210.60 200 � 20

A3
1 50 � 50 / S5

2 50 � 50
100 � 100 209.66 100 � 10
200 � 200 210.34 200 � 20

A4
1 50 � 50 / A1

2 50 � 50
100 � 100 209.80 100 � 10
200 � 200 210.61 200 � 20

A5
1 50 � 50 / A1

3ðB3Þ 50 � 50
100 � 100 209.66 100 � 10
200 � 200 210.34 200 � 20
100 � 100 is indeed a reasonably accurate choice for the
grid size. It is worth noting that the CPU time increases
rapidly as the grid spacing decreases. In order to have a
balance between the cost of the computer time and the
accuracy of the solution, we carried out all the computa-
tions with a 100 � 100 uniform mesh for square channels.

3.4. Accuracy check

To verify the code, five representative properties
obtained by the present work are shown in Table 2 together
with those in [15] at Dk = 100, r = 0.02 and Pr = 0.7,
where there is only one solution. They are Reynolds num-
ber Re (Re = Wma/m with Wm as the streamwise mean
alues as grid sizes

De Points Grids De

184.35 A1
4 50 � 50 317.31

0 185.66 100 � 100 331.78
0 186.02 200 � 200 337.11

321.39 A1
5ðB5Þ 50 � 50 /

0 330.24 100 � 100 370.56
0 332.49 200 � 200 373.23

270.49 B1 50 � 50 126.46
0 273.93 100 � 100 126.85
0 275.02 200 � 200 127.03

342.62 B2 50 � 50 321.39
0 339.25 100 � 100 329.82
0 338.85 200 � 200 332.49

312.99 B4 50 � 50 /
0 317.24 100 � 100 332.42
0 318.35 200 � 200 337.11

321.39
0 329.76
0 332.49

342.62
0 339.23
0 338.74



Table 2
Comparison of five representative properties at Dk = 100, r = 0.02,
Pr = 0.7 with those in [15]

Sources Re De jwjmax wmax hmax

Present work 541 76.5 5.528 0.0494 39.7
[15] 542 76.6 5.641 0.0496 39.9

Table 3
Locations of S1

1, S2
1, S1

2 and B1: a comparison with those in [19]

S1
1 S2

1 S1
2 B1

Present work 129.55 112.82 187.91 128.22
[19] 131.13 113.35 190.77 129.71
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velocity), Dean number De ¼ Re
ffiffiffi
r
p

ð Þ, maximum of abso-
lute values of secondary flow stream function (jwjmax),
maximum streamwise velocity (wmax) and maximum tem-
perature (hmax). The results are in good agreement, with a
very small difference (less than 2%) being due to the differ-
ent numerical methods used in the two studies. We also
compared, in Table 3, the locations (in terms of their De

values) of three limit points S1
1, S2

1, S1
2 and one bifurcation

point B1 with those available in [19] at r = 0.02 (see next
section for the notation of limit points). The results of
the present analysis are also in good agreement with those
in [19]. The very small difference (less than 1.5%) is believed
to be due to the different numerical methods used in the
two studies. The code was also used in our previous works
[18,20,21], showing that it works very well with good con-
vergency and high accuracy.
4. Results and discussion

4.1. Solution structure

The bifurcation structure is shown in Fig. 3 for De val-
ues from 0 up to 2250 at r = 5 � 10�6 and Pr = 7.0. In
Fig. 3, the u velocity at (0.9, 0.14) is used as the state var-
iable, enabling the most clear visualization of all solution
branches. Ten solution branches, labeled by S1, S2 and
A1–A8 respectively, are found. Here, S stands for symmet-
ric solutions with respect to the horizontal central plane
z = 0 and A for asymmetric solutions. Branch A1 is bifur-
cated from S1 at the symmetry-breaking bifurcation point
B1. Branches A2–A8 are bifurcated from S2 at seven sym-
metry-breaking bifurcation points B2–B8, respectively.
Two symmetric branches S1, S2 are isolated with each
other. Table 4 lists De values of eight symmetry-breaking
bifurcation points B1–B8 and thirty-one limit points labeled
by their branch symbol with a superscript number. For
example, S2

1 represents the second limit point on the solu-
tion branch S1. To visualize the details of branch connec-
tivity and some limit points, the locally enlarged state
diagrams are also shown in Fig. 3. As Fig. 3 is only 1 D
projection of N dimensional solution branches, all inter-
secting points except eight bifurcation points should not
be interpreted as connection points of branches.

Therefore, unknown initial conditions lead to the co-
existence of multiple steady fully-developed flows when
De > 110.90 ðS2

1Þ. Each of these multiple flows corresponds
to different initial conditions of flow.

The primary branch S1 is a symmetric solution branch
(Fig. 3(b)). It has two limit points S1

1 and S2
1. The two limit

points divide the branch into three parts S1�1, S1�2 and
S1�3, and generate a range (110.90 < De < 128.09) where
three steady solutions co-exist for a fixed value of De.
The secondary flows for these three sub-branches are the
2-cell state (one pair of Ekman vortices, Fig. 4(a)), the
weak 4-cell state with one pair of Ekman vortices and
one pair of weak Dean vortices, and the 4-cell state with
one pair of Ekman vortices and one pair of Dean vortices
(Fig. 4(b)), respectively. In the figure, the stream function is
normalized by its maximum absolute values jwjmax. A vor-
tex with a positive (negative) value of the secondary flow
stream function indicates a counter-clockwise (clockwise)
circulation. The Ekman vortices are the signature of pres-
sure gradients induced by the upper and lower walls
[15,18]. The Dean vortices come from a centrifugal instabil-
ity (also called Dean instability in the literature) [15,18].
The readers are referred to [15] for a detailed discussion
of 2-cell and 4-cell flow structures in general, their relations
with physical mechanisms and driving forces and their
effects on the flow resistance and heat transfer in particular.

In addition to the two limit points S1
1 and S2

1, the pri-
mary branch S1 also has a symmetry-breaking bifurcation
point B1 at De = 126.85 (Fig. 3(b)), originating an asym-
metric solution branch A1 (Fig. 3(c)). A1 has five limit
points A1

1–A5
1. The limit point A1

1 divides the branch into
upper sub-branch A1�1 and lower sub-branch A1�2. The
flows on A1�2 can be formed by mirror images of corre-
sponding flows on A1�1 at the same De. While the sub-
branch A1�1 contributes, through the two limit points A2

1

and A3
1, three flow states for any value of De in a very small

range 209.66 < De < 209.80, the difference among these
three flow states is negligibly small. The flow on A1�1 is
essentially an asymmetric 2-cell state as shown in Fig. 4(c).

The solution branch S2 is an isolated symmetric branch
(Fig. 3(d)). It is divided into seven sub-branches S2�1–S2�7

by seven limit points S1
2–S7

2. The flow on S2�1 is a 4-cell
state (Fig. 4(d)). However, this 4-cell structure differs from
the one on S1�3 (Fig. 4(b)) mainly on the shape and size of
Dean vortices. Two Dean vortices here stretch along span
direction rather than the radial direction. The spanwise dis-
tance between centers of two Dean vortices is noticeably
larger than that of the 4-cell flow on S1�3. The flow on
S2�2 is a 2-cell state, which is qualitatively similar to that
on S1�1 (Fig. 4(a)), but with a stronger secondary flow.
The flow on S2�3 is a weak 4-cell state with a pair of very
weak Dean vortices.

The limit point S3
2 leads the weakly 4-cell flow on S2�3 to

a 6-cell state on S2�4 with two pairs of Dean vortices along
the outer wall (Fig. 4(e)). The second pair appears because
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of the splitting of the original pair. It could be interesting to
study, in the future, the relation between this vortex split-
ting and the one due to the Eckhaus instability [22]. The
secondary flow on this sub-branch evolves to a stronger
one through the growth of second pair of Dean vortices
as De increases. The flows on S2�5 and S2�6 are, at low
De, an 8-cell state with three pairs of Dean vortices
(Fig. 4(f)). The third pair is formed from the outer wall.
This differs from the mechanism responsible for the
appearance of the second pair. As usual, the secondary
flows on S2�5 and S2�6 becomes stronger as De increases.
For the same value of De, the 8-cell structure on S2�6,
the third pair of Dean vortices in particular, is stronger
than that on S2�5. As De increases, the three pairs of Dean
vortices merge together and the flow on S2�6 becomes a 4-
cell state (Fig. 4(g)). The flow on S2�7 is a 6-cell state with
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Table 4
Locations of all limit points and bifurcation points up to De = 2250 at r = 5 � 10�6 and Pr = 7.0

Points De Points De Points De Points De

S1
1 128.09 S4

2 339.25 A4
4 1547.83 A2

8 1887.14

S2
1 110.90 S5

2 317.24 A5
4 1541.65 B1 126.85

A1
1 126.74 S6

2 1693.80 A1
5ðB5Þ 370.56 B2 329.82

A2
1 209.80 S7

2 826.76 A1
6 2113.64 B4 332.42

A3
1 209.66 A1

2 329.76 A2
6 1163.73 B6 556.63

A4
1 209.80 A1

3ðB3Þ 339.24 A3
6 1202.57 B7 694.94

A5
1 209.66 A2

3 1243.92 A4
6 895.087 B8 826.76

S1
2 185.66 A1

4 331.78 A1
7 1850.78

S2
2 330.24 A2

4 1542.52 A2
7 1267.33

S3
2 273.93 A3

4 1548.77 A1
8 1958.75
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one pair of Ekman vortices and two pairs of Dean vortices
(Fig. 4(h)).
In addition to the seven limit points, the solution branch
S2 has also seven symmetry-breaking bifurcation points



Fig. 4. Typical secondary flows on various solution sub-branches. (a) De = 89.4 on S1�1; (b) De = 118.5 on S1�3; (c) De = 447.2 on A1�1; (d) De = 335.4
on S2�1; (e) De = 315.8 on S2�4; (f) De = 335.4 on S2�5; (g) De = 447.2 on S2�6; (h) De = 894.4 on S2�7; (i) De = 357.8 on A3�1; (j) De = 1341.6 on A3�1;
(k) De = 357.8 on A4�1; (l) De = 1788.9 on A4�1; (m) De = 447.2 on A5�1; (n) De = 670.8 on A6�1; (o) De = 1185.1 on A6�3; (p) De = 1565.2 on A7�3 and
(q) De = 1341.6 on A8�1.
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B2–B8 (Fig. 3(d)), originating seven asymmetric solution
branches A2–A8, respectively. Branch A2 has one limit
point A1

2 dividing the branch into an upper sub-branch
A2�1 and a lower sub-branch A2�2 (Fig. 3(e)). Flows on
the lower sub-branches are the mirror images of the corre-
sponding flows on the upper sub-branches at the same De.
The flow on A2�1 is an asymmetric 2-cell state (qualita-
tively similar to that on A1�1, Fig. 4(c)). Branch A3 has
two limit points A1

3 and A2
3 (Fig. 3(f)). The two limit points

divide the branch into three parts A3�1, A3�2 and A3�3.
The secondary flow on A3�1 is a 5-cell state at low De val-
ues (Fig. 4(i)), but a 4-cell state at high De values (Fig. 4(j)).
Flows on A3�2 are also asymmetric and 5-cell, mirror
images of corresponding flows on A3�1 at the same De.
The flow on A3�3 is, on the other hand, a 4-cell state (qual-
itatively similar to that in Fig. 4(j)).

Branch A4 has five limit points A1
4–A5

4 (Fig. 3(g)). The
limit point A1

4 divides the branch into upper sub-branch
A4�1 and lower sub-branch A4�2. Flows on A4�2 can be
formed by mirror images of corresponding flows on A4�1

at the same De. While the sub-branch A4�1 contributes,
through the two limit points A2

4 and A3
4, three flow states

for any value of De in a very small range 1542.52 < De <
1548.77, the difference among these three flow states is
negligibly small. The flow on A4�1 is essentially an asym-
metric 7-cell state as shown in Fig. 4(k) and (l).

The limit point A1
5 divides the branch A5 into two sub-

branches A5�1 and A5�2 (Fig. 3(h)). Flows on the latter
are the mirror images of the former at the same De. The
flow on A5�1 is asymmetric and 5-cell (Fig. 4(m)). Branch
A6 has five sub-branches A6�1–A6�5 divides by the four
limit points A1

6–A4
6 (Fig. 3(i)). Flows on these sub-branches

are shown in Fig. 4(n)–(o). Branch A7 has two limit points
A1

7 and A2
7 (Fig. 3(j)). Flows are 4-cell on both sub-branches

A7�1 and A7�2 (qualitatively similar to that in Fig. 4(j)),
but 5-cell on sub-branch A7�3 (Fig. 4(p)). Branch A8 has
also two limit points (A1

8 and A2
8; Fig. 3(k)). Flows are 6-cell

on all three sub-branches A8�1–A8�3 (Fig. 4(q)).
It is interesting to note that there always exist secondary

flows in the cross-plane of curved microchannels even with
a very slight curvature over whole range of Dean number.
The flows in the curved microchannels are thus at least
two-dimensional.

4.2. Stability of multiple steady flows

Recognizing that there is no study of dynamic responses
of multiple flows to finite random disturbances in the liter-
ature, a relatively comprehensive transient computation is
made to examine the dynamic behavior and stability of typ-
ical steady flows with respect to three sets of finite random
disturbances with d = 5%, 10%, and 15% respectively. It is
found that the final dynamic evolution after a short tran-
sient temporal period is independent of the initial distur-
bances for all steady flows in the region 0 6 De 6 357.77.
The results presented in this paper are those obtained from
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the disturbance with d = 10% unless otherwise stated. At
any fixed value of De in the range 0 6 De 6 313.05, all
steady solutions develop, after initial finite random distur-
bances, to the same final state. There is no co-existence of
two or more stable states in this range within the scope of
the present study. The flow stability on the sub-branch
S2�2 changes as De changes even without passing any
bifurcation or limit point. In particular, the sub-branch is
unstable in the range 185.66 6 De 6 219.13, stable in the
range 219.13 < De 6 313.05, and unstable again in the
range 313.05 < De 6 330.24.

Five sub-ranges are identified with each having distinct
dynamic responses to the finite random disturbances. The
first is from De = 0 to De = 128.09 ðS1

1Þ, where the finite
random disturbances lead all steady flows at any fixed De

to a 2-cell steady state on S1�1with the same De. The sec-
ond covers the range 128.09 < De 6 219.13where all steady
flows evolve to a temporally periodic flow. In the third sub-
range 219.13 < De 6 313.05, the finite random distur-
bances lead all steady flows to a 2-cell steady state on
S2�2 with the same De. The fourth sub-range ranges from
De = 313.05 to De = 357.77 where the steady flows
response to the finite random disturbances in the form of
temporal oscillation with intermittency, a forecasting signal
of chaotic flows. In the last sub-range De > 357.77, any
finite random disturbance will deviate steady flows to a
chaotic oscillation.

4.3. 0 6 De 6 128.09

Fig. 5(a) typifies the responses of flows on S1�1 to finite
random disturbances. In the figure, the deviation of veloc-
ity components from their initial steady values is plotted
against the time s at (0.9, 0.14), (0.94, 0.1) and (0.96,
0.06) for De = 89.44. We plot both radial (u-) and span-
wise (v-) velocity components for the first point (0.9,
0.14) while only u-velocity component is shown for the
last two points. To facilitate the comparison, we use these
four velocity components (either velocity itself or deriva-
tion velocity from its initial steady value) in all figures
illustrating dynamic responses of multiple steady flows
to the finite random disturbances. It is observed that all
deviation velocities vanish after a short period of time.
The flows and temperature profiles return to their initial
steady ones shown in Fig. 4(a). Therefore, the flow on
S1�1 is stable with respect to the finite random
disturbances.

Fig. 5(b) illustrates the typical response of flows on S1�3

to finite random disturbances. It shows that the finite ran-
dom disturbances lead eventually the flows on this unstable
sub-branch to the stable one on S1�1 at the same De. This
is further be confirmed by our detailed check of flow and
temperature fields and is also true for the flows on S1�2.
Therefore, the steady flows on S1�2 and S1�3 are unstable
to finite random disturbances and response the distur-
bances by evolving to the stable solution on S1�1 at the
same De.
4.4. 128.09 < De 6 219.13

The dynamic response of the solution at De = 214.66 on
S2�2 is shown in Fig. 6(a). The finite random disturbances
here lead the flow to a temporal periodic oscillation with a
period of 0.113. Some typical secondary flow patters are
detailed in Fig. 6(b) within one period of dimensionless time
s. We clearly observe the temporal oscillations between sym-
metric/asymmetric 2-cell flows and symmetric/asymmetric
4-cell flows. A detailed study by the dynamic responses of
steady flows on the other branches at De = 214.66 and the
comparison of flow and temperature fields within one period
show that the finite random disturbances lead all the flows at
the same De to the same periodic oscillation.

A similar dynamic evolution pattern exists for all cases
with different values of De. This signals the similarity of flow
and temperature fields within one period among the periodic
oscillations at different values of De in the range 128.09 <
De 6 219.13. Our detailed examination of flow and temper-
ature fields has confirmed this, and shown that the flow
structures in Fig. 6(b) are typical for all De in this range.

The dynamic responses of steady flows on A1 in this range
tend to show that B1 is a subcritical Hopf bifurcation point.

4.5. 219.13 < De 6 313.05

The 2-cell flow on S2�2 is stable to the finite random
disturbances in this sub-range. This can be referred by the



-70

-50

-30

-10

10

30

50

70

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
τ

u(0.90,0.14)
u(0.94,0.10)
u(0.96,0.06)
v(0.90,0.14)

τ= 0.7850 0.8130  0.8500    0.8705 

Fig. 6. Response to finite random disturbances in form of periodic oscillation in 128.09 < De 6 219.13. (a) Dynamic response of the solution at
De = 214.66 on S2�2 to finite random disturbances: periodic oscillation (period = 0.113). (b) Typical secondary flow patterns in one period of temporal
periodic oscillation from the solution at De = 214.66 on S2�2.

892 L. Wang, F. Liu / International Journal of Heat and Mass Transfer 50 (2007) 881–896
typical response of the flow at De = 223.61 on this sub-
branch to disturbances in Fig. 7(a). Another striking feature
can be obtained by comparing the dynamic process in
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De = 223.61 on A1�1.
Fig. 7(a) with that in Fig. 5. The transient flows approach
their stable steady states asymptotically for S1�1, but in
oscillation for S2�2. The oscillation in Fig. 7(a) may be
reviewed as the over-damped oscillation with the damping
effect being weaker at higher De, and thus a longer oscillat-
ing time.

In this sub-range of the parameter space, the finite ran-
dom disturbances will lead all the other steady flows to the
2-cell steady state on S2�2 at the same De. Fig. 7(b) typifies
this process by the dynamic response of the steady flow at
De = 223.61 on A1�1 to disturbances.

4.6. 313.05 < De 6 357.77

In this sub-range, all solution branches are unstable.
S2�2, in particular, loses its stability gained in the last
sub-range. While three sets of finite random disturbances
lead each flow to the same final temporal oscillation, the
flows at different solution branches at the same De respond
the disturbances differently in the sense that the final oscil-
lation is different. However, for a fixed value of De, all the
oscillation are around the steady flows on S2�2 before
De = 330.24 (point S2

2) and around the steady flows on
A2 after De = 330.24. Whether A2�1 or A2�2 is difficult to
distinguish because they are very close. Therefore, S2�2

and A2 differ from the other solution branches in this
aspect.

Fig. 8 details dynamic response to the disturbances of
the steady flows at De = 324.23 on S1�3 (Fig. 8(a)). It is
observed that there exist intermittent aperiodic bursts in
the oscillation, one of routes to chaos [16]. The oscillation
is quasi-periodic between two bursts with the periodicity
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being degraded and the appearance frequency of bursts
being increased as De increases.

Fig. 8(b) details the secondary flow during quasi-peri-
odic oscillations (ii) and bursts (i) for the case shown in
Fig. 8(a). It is observed that the flow oscillates among sym-
metric/asymmetric 2-cell patterns during quasi-periodic
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Fig. 9. Dynamic response to finite random disturbances: chaotic oscillation. (a)
(c) Typical secondary flow patterns of chaotic flow on S1�3 at De = 447.21.
oscillations, but among symmetric/asymmetric 4-cell struc-
tures during bursts.
4.7. De > 357.77

Fig. 9(a) shows the dynamic response of the flow at
De = 447.21 on S1�3 to finite random disturbance with
d = 10%. The bursts are still observed, but with a high
appearance frequency and a generally small amplitude.
The oscillation between two bursts, however, cannot be
reviewed as quasi-periodic any more. The Hilbert spectra
of four temporal velocity series in Fig. 9(a) are constructed
by the Hilbert transformation and shown in Fig. 9(b) [23].
They contain a broad-band noise, indicating the flow being
chaotic [16] (This has also been confirmed by the sensitivity
to the initial conditions). As De increases, the chaotic fea-
ture of oscillating flows becomes stronger. Fig. 9(c) details
some typical secondary flow patterns during the temporally
chaotic flow shown in Fig. 9(a). It is observed that the flow
oscillates among 4-cell patterns during bursts (ii in
Fig. 9(c)), but among 2-cell structures during the other per-
iod (i in Fig. 9(c)).

The transition from the intermittent oscillation to the
chaotic oscillation is believed to be a smooth process
characterized by the increase of appearance frequency
and the decrease of the amplitude of bursts as the increase
of De.
4.8. Friction factor and Nusselt number

For engineering applications, the most important results
are friction factor and Nusselt number. Since the friction
1.1 0  40 80 120 160 200 240
10-2

10-1

100

101

102

103

104

105

Frequency (Hz)

E
ne

rg
y

u(0.90,0.14)
u(0.94,0.10)
u(0.96,0.06)
v(0.90,0.14)

(ii)  0.7530

De = 447.21 on S1�3. (b) Hilbert spectrum of the chaotic oscillation in (a).



894 L. Wang, F. Liu / International Journal of Heat and Mass Transfer 50 (2007) 881–896
factor and Nusselt number depend on flow and tempera-
ture fields, the multiplicity and stability will strongly affect
both their distributions and their mean values.
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Table 5
Correlating relations of mean friction factors and mean Nusselt numbers

Range fRe/(fRe)0 Nu/Nu0

0 < De 6 450 0.96194+0.01035De0.78715

0 < De 6 128.09 1.30118+0.05617De0.74442

128.09 < De 6 219.13 0.32187De0.50376

219.13 < De 6 313.05 0.067De2.5867

313.05 < De 6 450 0.13099De0.6357
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realizable fully-developed flows under the effects of both
initial conditions and disturbances and on the basis of their
values for a straight duct [(fRe)0 = 14.23; Nu0 = 3.608] to
illustrate the curvature effect. For the periodic flows in
128.09 < De 6 219.13, the mean friction and the mean
Nusselt number in Fig. 10(a) are those averaged over a per-
iod. They are also averaged over an enough long period of
time for either the intermittent or the chaotic flows in
De > 313.05. For the oscillating flows in 128.09 <
De 6 219.13 or in De > 313.05, both minimal and maximal
values of the mean friction factor and the mean Nusselt
number are also shown in Fig. 10(a) with their typical tem-
poral oscillations shown in Fig. 10(b)–(d). Table 5 lists the
correlating relations of mean friction factors and mean
Nusselt numbers which fit quiet well with the data in
Fig. 10(a).

Therefore, both the mean friction factor and the mean
Nusselt number of convection in curved microchannels
even with a very slight curvature are higher than their
counterparts in perfectly straight channels (Fig. 10(a)).
This comes apparently from the secondary flow and
becomes more appreciable as De increases. The reported
high experimental values of f/fmac and Nu/Numac may thus
partly be from the effect of channel curvature.

Associated with the shift between stable steady flows
and temporal oscillating flows, a drastic change in the
mean Nusselt number is observed (Fig. 10(a)). However,
this significant change does not appear for the mean fric-
tion factor which increases quite smoothly as De increases
over the whole range. There appears no transition from
laminar to turbulent flow for Dean numbers up to 450.
Another very interesting feature is that the Nusselt number
ratio is much higher than the friction factor ratio for all De

values, and the difference becomes more remarkable as De

increases. We can therefore significantly enhance the heat
transfer by the secondary flow in curved microchannels at
the expense of very slight increase of resistance to the flow.

There exist no stable steady fully-developed flows in the
range 128.09 < De 6 219.13 and in the range De > 313.05
so that both the mean friction factor and the mean Nusselt
number are at temporal oscillation in these ranges. It
appears necessary to re-examine the prevalent assumption
in the literature of existence of stable steady fully-devel-
oped flows in all ranges. A temporal oscillation in the fric-
tion factor and the Nusselt number could, in turn, generate
the oscillation of pumping system and thermal stress in
practice, which can cause the failure of pumping system
and equipments.
5. Concluding remarks

In an attempt to quantify the effects of channel curva-
ture, initial conditions and disturbances, a numerical study
is made on the fully-developed bifurcation structure and
stability of the forced convection in curved microchannels
of square cross-section and curvature ratio 5 � 10�6. The
governing differential equations from the conservation laws
are discretized by the finite volume method to obtain
discretization equations, a set of nonlinear algebraic equa-
tions. The discretization equations are solved for parame-
ter-dependence of flow and temperature fields by the
Euler–Newton continuation with the solution branches
parameterized by the pseudo Dean number, the arclength
or the local variable. The bifurcation points are detected
by the test function. The Hopf bifurcation point is deter-
mined by the transient computation. The branch switching
is made by a scheme approximating the difference between
branches. Two symmetric and eight asymmetric solution
branches are found with eight symmetry-breaking bifurca-
tion points and thirty-one limit points.

The dynamic responses of multiple steady flows to the
2D finite random disturbances are examined by the direct
transient computation. The flows are found to respond to
three sets of finite random disturbances in the same manner
in the range 0 6 De 6 357.77. At any fixed value of Dean
number in the range 0 6 De 6 313.05, all steady flows
develop, after the initial finite random disturbances, to
the same final state. The finite random disturbances lead
the multiple steady flows to a stable steady 2-cell state on
S1�1 in 0 6 De 6 128.09, a temporal periodic oscillation
between symmetric/asymmetric 2-cell flows and symmet-
ric/asymmetric 4-cell flows in 128.09 < De 6 219.13,
another stable steady 2-cell state on S2�2 in 219.13 <
De 6 313.05, a temporal oscillation with the intermittency
around the steady solution on S2�2 before the limit point
S2

2 and on A2 after S2
2 in 313.05 < De 6 355.77, and a cha-

otic oscillation around the steady solution on A2 in
De > 357.77. The intermittent flow is characterized by the
flow oscillation among the symmetric/asymmetric 2-cell
patterns during the period between two bursts and among
the symmetric/asymmetric 4-cell structures during the
burst. The chaotic flow is, on the other hand, featured by
the flow oscillation among the 4-cell patterns during the
burst, and the 2-cell structures during the other period.

Both the mean friction factor and the mean Nusselt
number are obtained with their correlating relations listed
in Table 5 for all physically-realizable fully-developed
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flows. The channel curvature can enhance the heat transfer
significantly at the expense of slight increase of flow resis-
tance. The drastic change of mean Nusselt number occurs
when flows shift between the stable steady flows and the
temporal oscillating flows.

The channel curvature, the flow multiplicity and the sta-
bility are at least partially responsible for the large differ-
ences in the reported friction factors and heat transfer
coefficients in the literature, and should be further studied
in order to provide the tools necessary for optimal design
and process control of various MEMS and modern instru-
ments used in chemical analysis and biomedical diagnostics
(currently, the microchannel flows in biomedical diagnos-
tics are limited to those with a low value of Dean number).
New functional microdevices can also be produced by cre-
atively using or tailoring multiple states of flows and heat
transfer in microchannels.
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